Mini Homework 6

Name: - Math 117 - Summer 2022

1) Let V, W be F vector spaces. Recall that a skew-symmetric map is a function

$$
f:V\times V\rightarrow W
$$

such that $f(v_1, v_2) = -f(v_2, v_1)$

- (a) (2 points) Prove that an alternating map is always skew-symmetric
- (b) (1 point) Prove that if $char(\mathbb{F}) \neq 2$ then a skew-symmetric map is also alternating (Recall: we discussed char of a field in lecture 1)

Solution:

2) (2 points) Recall that in class we constructed the map $\Lambda^2(V) \to V \otimes V$ that sends the simple wedge

$$
v_1 \wedge v_2 \rightarrow v_1 \otimes v_2 - v_2 \otimes v_1
$$

Prove that this map is injective.

Remark: In this way, we can think of the exterior product $\Lambda^2(V) \subseteq V \otimes V$ instead of as a quotient. This is how it is often defined in the literature, when they haven't built up the machinery to talk about quotient spaces. However, this has some major downsides.

- 1. In our construction, there is a natural map $V \otimes V \to \Lambda^2(V)$, since it is a quotient space. Viewing the alternating maps as a subspace of the tensor product, there is no natural map back into the subspace (in other words, there isn't a natural way to make a bilinear map into an alternating map).
- 2. Books get around this by defining a formula to 'alternatize' a bilinear map. However, it is both 1) a very gross formula that involves knowledge of group theory; and 2) depends on certain numbers being divisible in our field. If we only care about $\mathbb R$ or $\mathbb C$ then this latter issue is okay, but many many situations naturally arise where we have to discuss more general fields.
- 3. This is all to say, once we took our medicine, and learned quotient spaces, our life really does become better, and we can do more powerful constructions. Anyway, on-wards and upwards . . .

Solution:

3) Prove that

(a) (2 points) $v_1 \wedge v_2 = 0$ in $\wedge^2(V)$ iff every alternating bilinear map

$$
f:V\times V\to W
$$

has $f(v_1, v_2) = 0$

- (b) (1 point) Conclude that $\Lambda^2(V) = 0 \iff$ every symmetric bilinear map $f: V \times V \to W$ is identically 0 (ie, $f(v_1, v_2) = 0$ for all $v_1, v_2, \in V$
- (c) (2 points) Prove that $v_1 \wedge v_2 = v'_1 \wedge v'_2$ in $\wedge^2(V)$ iff every alternating bilinear map

 $f: V \times V \rightarrow W$

has the property that $f(v_1, v_2) = f(v'_1, v'_2)$

Solution: